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Abstract
The Boussinesq equation usually arises in a physical problem as a long wave
equation. The present work extends the search of periodic wave solutions for
it. The Hirota bilinear method and Riemann theta function are employed in the
process. We also analyse the asymptotic property of periodic waves in detail.
Furthermore, it is of interest to note that well-known soliton solutions can be
reduced from the periodic wave solutions.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the construction of explicit solutions for soliton equations is an important
task in soliton theory. Especially, it is an important tool in characterizing many complicated
phenomena and dynamical processes in physics, mechanics, chemistry, biology, etc. Some
interesting explicit solutions have been found over recent decades, the most important
among which are N-soliton solutions, quasi-periodic (or algebro-geometric) solutions, rational
solutions, polar expansion solutions and others. In the process of searching for the solutions,
quite a few systematic methods have been developed, such as inverse scattering transformation
[1, 2], Darboux transformation [3, 4], Hirota bilinear method [5–10], algebro-geometric
method [11–15] and so on.

Among them, the bilinear method introduced by Hirota provides us with a comprehensive
approach to construct exact solutions of nonlinear evolution equations (NEEs). The idea was to
make a transformation into new variables, so that in these new variables multisoliton solutions
appear in a particularly simple form. The Hirota method turned out to be very effective and
was quickly shown to give N-soliton solutions to the many important NEEs. The appeal and
success of this approach lies in the fact that it allows one to obtain multisoliton solutions in
a straightforward way. In recent years, the method also has been developed for obtaining
Wronskian and Pfaffian forms of N-soliton solutions [10].
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In the studies of the soliton theory, the algebro-geometric method, which was first
developed by Matveev, Its, Novikov and Dubrovin et al, is also a powerful tool to construct
the exact solutions of soliton equations. The exact solutions derived by this method are called
quasi-periodic or algebro-geometric solutions, which can be used to find multisoliton solutions
through the degeneracy procedure [16]. Very recently, algebro-geometric method has been
successfully applied to obtain quasi-periodic solutions of several soliton equations [17–23].
It is noted that soliton solutions are typically expressed in terms of rational or hyperbolic
functions, whereas quasi-periodic solutions require the use of Riemann theta functions and
calculus on Riemann surfaces.

In this paper, we will use the Boussinesq equation [24]

utt − uxx − (3u2)xx − uxxxx = 0 (1.1)

as a model to illustrate this idea. It is known that the propagation of long waves in shallow water
is governed by the Boussinesq equation, which also arises in several other physical applications
including one-dimensional nonlinear lattice waves, vibrations in a nonlinear string and ion
sound waves in a plasma. In the particular field of water waves, the Boussinesq equation
describes waves that are moving in one dimension but which may propagate in opposite
directions. The Hirota bilinear operator and Riemann theta function will be employed to
construct periodic wave solutions directly in the present paper. They have been demonstrated
to be effective in treating solitary and periodic waves in the field of nonlinear waves. Indeed,
the Hirota method enables us to find explicit periodic wave solutions by using complicated
algebro-geometric theory. It is shown that the periodic wave solutions can be reduced to
classical soliton solutions under a certain limit and the known results of solitary waves are
recovered. Moreover, all parameters appearing in the solutions are free variables, whereas
usual quasi-periodic solutions involve Riemann constants which are difficult to be determined
and need to make complicated Abel transformation on the Riemann surface.

The objective of this paper is to study exact and explicit periodic wave solutions of the
Boussinesq equation. As we all know, Nakamura, Fan and his co-workers have obtained
periodic wave solutions of the KdV and KP equations by the bilinear approach [26, 27].
This gives us a way to present a direct method of calculating new exact solutions in Hirota’s
formalism. It is well known that not much work has been done on the solutions of the
Boussinesq equation, except for soliton and fewer exact solutions [3, 24, 25]. Therefore, the
study of periodic wave solutions will certainly enrich the theory of the Boussinesq equation.
The outline of the present paper is as follows. In section 2, the Boussinesq equation is
considered and the periodic wave solutions of this equation are presented. In particular, we
obtain the one-periodic wave solution and two-periodic wave solutions. It is worthwhile
to note that they can be reduced to classical one-soliton solution and two-soliton solutions,
respectively. Finally, a summary and discussions are given in section 3.

2. Analysis

We first recall briefly the Boussinesq equation (1.1) in the light of our bilinear procedure.
Through the dependent variable transformation

u = 2(ln f )xx, (2.1)

equation (1.1) can be transformed into the following bilinear form:(
D2

t − D2
x − D4

x

)
f · f = 0, (2.2)

where, as usual, Dx and Dt are the bilinear operators defined by

Dm
x Dn

t f · g = (∂x − ∂x ′)m(∂t − ∂t ′)
nf (x, t)g(x ′, t ′)|x ′=x,t ′=t .
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The first two-soliton solutions we obtain are given by

f1 = 1 + eξ1 (solitary wave); (2.3a)

f2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 (two-soliton), (2.3b)

where

ξj = kjx + εj kj

√
1 + k2

j t + ξ
(0)
j , εj = ±1, j = 1, 2 (2.3c)

and

eA12 =
3(k1 − k2)

2 +
(
ε1

√
1 + k2

1 − ε2

√
1 + k2

2

)2

3(k1 + k2)2 +
(
ε1

√
1 + k2

1 − ε2

√
1 + k2

2

)2
. (2.3d)

In addition, let us consider equation (1.1) with the nonzero asymptotic condition, u −→ u0 as
|x| −→ ∞. Hence we look for a solution u of the form

u = u0 + 2(ln f )xx (2.4)

by adding the constant solution u0. Substituting (2.4) into equation (1.1) and integrating once
again, we then get another bilinear form

G(Dx,Dt)f · f = [
D2

t − (1 + 6u0)D
2
x − D4

x + c
]
f · f = 0, (2.5)

where c = c(t) is an integration constant.
It is important to note that the D-operator has good property when acting on exponential

functions

Dm
x Dn

t eξ1 · eξ2 = (k1 − k2)
m(ω1 − ω2)

n eξ1+ξ2 ,

where ξj = kjx + ωj t + ξ
(0)
j , j = 1, 2. More general, we have

G(Dx,Dt) eξ1 · eξ2 = G(k1 − k2, ω1 − ω2) eξ1+ξ2 .

Afterwards, we consider the Riemann theta function solution of the Boussinesq equation

f =
∑
n∈ZN

eπ i〈τn,n〉+2π i〈ξ,n〉, (2.6)

where n = (n1, . . . , nN)T, ξ = (ξ1, . . . , ξN), τ is a symmetric matrix and Im|τ | > 0,
ξj = kjx + ωj t + ξ

(0)
j , j = 1, . . . , N .

In what follows, we present a one-periodic wave solution and two-periodic wave solutions
of the Boussinesq equation in two cases of N = 1 and N = 2.

2.1. One-periodic wave solution and its reduction

Our concern here is with the case N = 1; then (2.6) becomes

f =
∞∑

n=−∞
e2π inξ+π in2τ . (2.7)

Substituting (2.7) into (2.5) gives

Gf · f = G(Dx,Dt)

∞∑
n=−∞

e2π inξ+π in2τ ·
∞∑

m=−∞
e2π imξ+π im2τ

=
∞∑

n=−∞

∞∑
m=−∞

G(Dx,Dt) e2π inξ+π in2τ · e2π imξ+π im2τ
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=
∞∑

n=−∞

∞∑
m=−∞

G[2π i(n − m)k, 2π i(n − m)ω] e2π i(n+m)ξ+π i(n2+m2)τ

n+m=m′=
∞∑

m′=−∞

{ ∞∑
n=−∞

G[2π i(2n − m′)k, 2π i(2n − m′)ω] eπ i[n2+(n−m′)2]τ

}
e2π im′ξ

≡
∞∑

m′=−∞
G(m′) e2π im′ξ = 0.

Note that

G(m′) =
∞∑

n=−∞
G[2π i(2n − m′)k, 2π i(2n − m′)ω] eπ i[n2+(n−m′)2]τ

n=n′+1=
∞∑

n′=−∞
G{2π i[2n′ − (m′ − 2)]k, 2π i[2n′ − (m′ − 2)]ω}

× exp{π i[n′2 + (n′ − (m′ − 2))2]τ } exp[2π i(m′ − 1)τ ]

= G(m′ − 2) e2π i(m′−1)τ

= · · · =
{

G(0) eπ im′2τ/2, m′ is even

G(1) eπ i(m′2−1)τ/4, m′ is odd,

which implies that if G(0) = G(1) = 0, then

G(m′) = 0,m′ ∈ Z.

It is to note that (2.4) is an important class of exact solutions for the Boussinesq equation.
In this way, we may let

G(0) =
∞∑

n=−∞
[−16π2n2ω2 + 16(1 + 6u0)π

2n2k2 − 256π4n4k4 + c] e2π in2τ = 0, (2.8)

G(1) =
∞∑

n=−∞
[−4π2(2n − 1)2ω2 + 4(1 + 6u0)π

2(2n − 1)2k2

− 16π4(2n − 1)4k4 + c] eπ i(2n2−2n+1)τ = 0. (2.9)

Denote

δ1(n) = e2π in2τ , δ2(n) = eπ i(2n2−2n+1)τ ,

a11 = −
∞∑

n=−∞
16π2n2δ1(n), a12 =

∞∑
n=−∞

δ1(n),

b1 =
∞∑

n=−∞
[16(1 + 6u0)π

2n2k2 − 256π4n4k4]δ1(n), a21 = −
∞∑

n=−∞
4π2(2n − 1)2δ2(n),

a22 =
∞∑

n=−∞
δ2(n), b2 =

∞∑
n=−∞

[4(1 + 6u0)π
2(2n − 1)2k2 − 16π4(2n − 1)4k4]δ2(n).

Then (2.8) and (2.9) can be written as

a11ω
2 + a12c + b1 = 0, a21ω

2 + a22c + b2 = 0.
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(a) (b) (c)

Figure 1. The plot of a one-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k = 0.1, τ = i.

)a( )b( )c(

Figure 2. The plot of a one-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k = 0.1, τ = 3i.

)a( )b( )c(

Figure 3. The plot of a one-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k = 0.15, τ = i.

Solving this system, we get

ω2 = b2a12 − b1a22

a11a22 − a12a21
, c = b1a21 − b2a11

a11a22 − a12a21
. (2.10)

Finally, we get a one-periodic wave solution

u = u0 + 2(ln f )xx, (2.11)

where f and ω are given by (2.7) and (2.10), respectively. Figures 1–5 illustrate the five
possibilities of a one-periodic wave for the Boussinesq equation by choosing the parameters k
and τ appropriately. It is important to emphasize that the solitons retain their identities, save
for a cumulative phase shift. From figures 1–3, we can see that the parameter τ does not affect
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)a( )b( )c(

Figure 4. The plot of a one-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k = 0.1i, τ = 3i.

)a( )b( )c(

Figure 5. The plot of a one-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k = 0.1i, τ = 0.01i.

the period and shape of the wave, while the parameter k has an effect on the period and shape
of the wave. But when k is chosen as imaginary number, the parameter τ has influence on
them, which are shown in figures 4 and 5. It would be of considerable interest to note that
figure 5 pictures only one solitary wave, for a specific choice of the parameters k = 0.1i and
τ = 0.01i. Another very important aspect to consider is for other choices of parameters; there
will be in general other possibilities.

The well-known soliton solution of the Boussinesq equation can be obtained as a limit of
the periodic solution (2.11). For this purpose, we write f as

f = 1 + α(e2π iξ + e−2π iξ ) + α4(e4π iξ + e−4π iξ ) + · · · ,
where α = eiπτ .

Setting u0 = 0, ξ = ξ ′/2π i − τ/2, k′ = 2π ik, ω′ = 2π iω, we get

f = 1 + ek′x+ω′t + α2 e−ξ ′
+ α2 e2ξ ′

+ α6 e−2ξ ′
+ · · ·

−→ 1 + ek′x+ω′t , as α −→ 0.

So the periodic solution (2.11) can be reduced to the well-known soliton solution

u = 2(ln f )xx, f = 1 + ek′x+ω′t ,

which is shown to be equivalent to (2.3a). In order to satisfy (2.3c), we only need to prove
that

ω′ −→ εk′√1 + k′2, ε = ±1, as α −→ 0. (2.12)

In fact, it is not difficult to obtain that

a11 = −32π2(α2 + 4α8 + · · ·),
a12 = 1 + 2α2 + · · · ,
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a21 = −8π2(α + 9α5 + · · ·),
a22 = 2(α + α5 + · · ·),
b1 = 32k2π2(1 − 16k2π2)α2 + 128k2π2(1 − 64k2π2)α8 + · · · ,
b2 = 8k2π2(1 − 4k2π2)α + 72k2π2(1 − 36k2π2)α5 + · · · ,

which lead to

b2a12 − b1a22 = 8k2π2(1 − 4k2π2)α + o(α2), a11a22 − a12a21 = 8π2α + o(α2).

Therefore, we have

ω −→ εk
√

1 − 4k2π2, ε = ±1, as α −→ 0,

which implies (2.12).

2.2. Two-periodic wave solution and its reduction

In this section, let us consider two-periodic wave solutions of the Boussinesq equation (N = 2).
Substituting (2.6) into (2.5), we have

Gf · f =
∑

n,m∈Z2

G(Dx,Dt) e2π i〈ξ,n〉+π i〈τn,n〉 · e2π i〈ξ,m〉+π i〈τm,m〉

=
∑

n,m∈Z2

G(2π i〈n − m, k〉, 2π i〈n − m,ω〉) e2π i〈ξ,n+m〉+π i(〈τm,m〉+〈τn,n〉)

n+m=m′=
∑

m′∈Z2

∞∑
n1,n2=−∞

G(2π i〈2n − m′, k〉, 2π i〈2n − m′, ω〉)

× exp[π i(〈τ(n − m′), n − m′〉 + 〈τn, n〉)] exp(2π i〈ξ,m′〉)
≡

∑
m′∈Z2

G(m′
1,m

′
2) e2π i〈ξ,m′〉 = 0.

It is easy to calculate that

G(m′
1,m

′
2) =

∞∑
n1,n2=−∞

G(2π i〈2n − m′, k〉, 2π i〈2n − m′, ω〉) eπ i(〈τ(n−m′),n−m′〉+〈τn,n〉)

nj =n′
j +δjl ,l=1,2=

∞∑
n1,n2=−∞

G

[
2π i

2∑
j=1

(2n′
j − (m′

j − 2δjl))kj , 2π i
2∑

j=1

(2n′
j − (m′

j − 2δjl))ωj

]

× exp

{
π i

2∑
j,k=1

[(n′
j + δjl)τjk(n

′
k + δkl)

+ ((m′
j − 2δjl − n′

j ) + δjl)τjk((m
′
k − 2δkl − n′

k) + δkl)]

}

=
{

G(m′
1 − 2,m′

2) e2π i(m′
1−1)τ11+2π im′

2τ12, l = 1

G(m′
1,m

′
2 − 2) e2π i(m′

2−1)τ22+2π im′
1τ12, l = 2,

which implies that if

G(0, 0) = G(0, 1) = G(1, 0) = G(1, 1) = 0,

then G(m′
1,m

′
2) = 0 and (2.4) is an exact solution of the Boussinesq equation.
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)a( )b( )c(

Figure 6. The plot of a two-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k1 = 0.1, k2 = −0.3, τ11 = 0.1i, τ12 = 0.2i,
τ22 = 3i.

Denote

aj1 = −
∞∑

n1,n2=−∞
4π2

(
2n1 − m

j

1

)2
δj (n),

aj2 = −
∞∑

n1,n2=−∞
4π2

(
2n2 − m

j

2

)2
δj (n),

aj3 =
∞∑

n1,n2=−∞
24π2〈2n − mj, k〉2δj (n),

aj4 =
∞∑

n1,n2=−∞
δj (n),

bj =
∞∑

n1,n2=−∞
(−4π2〈2n − mj, k〉2 + 16π4〈2n − mj, k〉4)δj (n),

δj (n) = eπ i〈τ(n−mj ),n−mj 〉+π i〈τn,n〉,
j = 1, 2, 3, 4,m1 = (0, 0), m2 = (1, 0), m3 = (0, 1), m4 = (1, 1)

A = (akj )4×4, b = (b1, b2, b3, b4)
T.

Then we have

A


ω2

1

ω2
2

u0

c

 = b,

from which we obtain

ω2
1 = 	1

	
, ω2

2 = 	2

	
, u0 = 	3

	
, (2.13)

where 	 = |A| and 	1,	2,	3 are produced from 	 by replacing its first, second and third
column with b, respectively.

Finally, we get two-periodic wave solutions

u = u0 + 2(ln f )xx, (2.14)

where f and ω1, ω2 are given by (2.6) and (2.13), respectively. The properties of the solutions
are shown in figures 6–10 for suitable parametric choices. Figures 6–9 give effect of the
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)a( )b( )c(

Figure 7. The plot of a two-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k1 = 0.3, k2 = −0.3, τ11 = 0.1i, τ12 = 0.2i,
τ22 = 3i.

)a( )b( )c(

Figure 8. The plot of a two-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k1 = 0.2, k2 = −0.2, τ11 = 0.1i, τ12 = 0.3i,
τ22 = 2i.

)a( )b( )c(

Figure 9. The plot of a two-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k1 = 0.01, k2 = −0.2, τ11 = 0.1i, τ12 = 0.3i,
τ22 = 2i.

parameters k1, k2 and τ11, τ12, τ22 on the period and shape of waves. It is worthwhile to
note that under suitable circumstances these parameters play a pivotal role in the shape and
period of waves. It can also be straightforwardly seen that the amplitudes undergo changes
dramatically for all other choices. Figure 10 shows that two-periodic waves can degenerate to
a one-periodic wave when k1 is sufficiently small.

The two-soliton solutions of the Boussinesq equation can be obtained as a limit of the
periodic solutions (2.14). We write f as

f = 1 + (e2π iξ1 + e−2π iξ1) eπ iτ11 + (e2π iξ2 + e−2π iξ2) eπ iτ22

+ (e2π i(ξ1+ξ2) + e−2π i(ξ1+ξ2)) eπ i(τ11+2τ12+τ22) + · · · .
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)a( )b( )c(

Figure 10. The plot of a two-periodic wave for the Boussinesq equation: (a) along the x-axis,
(b) along the t-axis, (c) u versus x and t, where k1 = 0.0002, k2 = −0.3, τ11 = 0.1i, τ12 = 0.2i,
τ22 = 3i.

Setting ξ ′
1 = 2π iξ1 + π iτ11, ξ

′
2 = 2π iξ2 + π iτ22, τ12 = iτ̃ (̃τ is a real), we get

f = 1 + eξ ′
1 + eξ ′

2 + eξ ′
1+ξ ′

2+2π iτ12 + α2
1 e−ξ ′

1 + α2
2 e−ξ ′

2 + α2
1α

2
2 e−ξ ′

1−ξ ′
2+2π iτ12 + · · ·

−→ 1 + eξ ′
1 + eξ ′

2 + eξ ′
1+ξ ′

2−2πτ̃ , as α1, α2 −→ 0,

where

α1 = eπ iτ11 , α2 = eπ iτ22 , ξ ′
j = k′

j x + ω′
j t + π iτjj ,

e−2πτ̃ =
3(k′

1 − k′
2)

2 +
(
ε1

√
1 + k′2

1 − ε2

√
1 + k′2

2

)2

3(k′
1 + k′

2)
2 +

(
ε1

√
1 + k′2

1 − ε2

√
1 + k′2

2

)2
,

ω′
j −→ εj k

′
j

√
1 + k′2

j , εj = ±1, j = 1, 2, as α1, α2 −→ 0.

Obviously, it is seen to be equivalent to (2.3b)–(2.3d).

3. Conclusion and discussion

In this paper, based on the above study, exact and explicit periodic wave solutions of the
Boussinesq equation have been presented by virtue of the Hirota bilinear method and the
Riemann theta function. Moreover, they can be reduced to classical soliton solutions under
a certain limit and known results of solitary waves are recovered. Regarding the conclusions
of this equation, perhaps the most significant is that for choosing the constant solution u0

appropriately. The result not only provides us an effective method to construct new exact
solutions, but also greatly enriches the solution structure for the Boussinesq equation. It is
an important aspect of the present work that the methods we have employed can be readily
adapted to the other NEEs that possess the isospectral property and/or have soliton solutions
obtainable by the direct approach. However, it remains an open problem as to whether the
periodic wave solutions can be reduced to rational solutions, positon, negaton and complexiton
solutions, and further investigation on it will be pursued in the future. We strongly believe
that the bilinear approach will continue to be successful and more surprising results await our
efforts.
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